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export facilities and increased marine shipping near 
Kitimat (ESSA Technologies et al., 2014).

The goals of our recent study, Maguire et  al. 
(2020; EMAS 192:568), were (1) to determine if past 
emissions from the smelter had elevated concentra-
tions of major anions and cations in small streams 
nearby and (2) to delineate the spatial extent of any 
effects on stream water chemistry in the Kitimat 
River watershed.  To do this, we examined potential 
differences in stream water chemistry and export of 
ions between exposed and reference streams in 2015 
and 2016. We reported that there were elevated con-
centrations of sulphate (SO4−2; 5 × higher), nitrate 
(NO3−; 10 × higher), fluoride (F−; 12 × higher), and 
calcium (Ca+2;2 × higher) in six exposed streams 
near the smelter, relative to three proximal unex- 
posed reference streams. Stream export of SO4−2 and 
Ca+2 (normalized by stream discharge and catchment  
area) in exposed streams was also elevated relative to  
reference streams by 4 × and 2 × , respectively.  Dis-
tances from the smelter where SO4−2 and Ca+2 export  
were elevated extended up to 16 and 8  km, respec-
tively.  These differences in water chemistry 
between exposed and reference streams  reflect the 
cumulative impact of industrial atmospheric emis-
sions deposited on the exposed portion of the Kitimat 
River watershed over past decades and recent years.

In their letter to the editor in this issue of Envi-
ronmental Monitoring and Assessment (EMAS),   
Watmough et  al. disagree with one statement in 
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1The Rio Tinto aluminum smelter at the terminus of 
the Kitimat River near the town of Kitimat in north 
coastal British Columbia has been in operation for 
over 60 years. Following a major upgrade to the facil-
ity (~ $6 billion), atmospheric emissions of sulfur 
dioxide (SO2) from the smelter increased from ~ 6200 
tonnes SO2/year in 2008–2013 to ~ 10,500 tonnes 
SO2/year in 2016–2018 (Rio Tinto, 2018); during the 
same time period emissions of nitrogen oxide (NO x) 
increased slightly from ~ 265 to ~ 300 tonnes NOx/
year,  whereas emissions of hydrogen fluoride (HF) 
decreased from ~ 490 to ~ 145 tonnes HF/year. Emis-
sions of SO2 and NOx are expected to increase further 
with on-going development of liquefied natural gas  
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our paper where we suggested that the observed 
increases in ion concentrations and export “…may 
contribute to [biological] effects within tributaries on 
benthic stream communities and regionally impor-
tant juvenile Pacific salmon” (Maguire et al., 2020).   
Watmough et al. do not disagree with our methods or 
findings, which indicate that smelter emissions have 
altered stream water chemistry within the Kitimat 
River watershed.  However, they argue that annual 
SO2 deposition from the smelter is lower than aver-
age annual acid buffering capacity of the exposed 
streams (i.e., critical load),  calculated using data 
from our study and the steady state water chemistry 
(SSWC) model (Henriksen & Posch, 2001), indicat-
ing “…there is little probability of biological impacts 
associated with acidification caused by SO2  emis-
sions from the smelter.” One reason for the appar-
ent difference between these qualified  statements  
( in quotations above) may be that Watmough et al. have  
focused on one potential pathway of effects via sul-
fur deposition, whereas we have considered multiple 
chemical pathways of effects on streams including 
sulfur, nitrogen, and fluoride.

With respect to sulfur and nitrogen, Watmough 
et al. have focused on calculating the average annual 
acid buffering capacities of streams. They emphasize 
that changes in long-term (years to decades) average 
annual pH of the exposed streams, due to elevated 
SO2  deposition, are predicted to be minor because 
most of these catchments appear to be moderately 
well buffered from acidification. We do not disagree 
with their calculation of annual acid buffering capac-
ity of the study streams. However, the reason we did 
not attempt these critical load calculations in our 
paper was that given these small coastal tributaries 
are temporally highly variable with respect to their 
chemistry and hydrology, we think that several other 
factors should also be tested and considered at the 
same time. These factors include short-term variation 
(days to weeks) in stream acidity and alkalinity (e.g., 
Driscoll et  al., 2001), which are regulated by varia- 
tion in anions (including SO4−2 and NO3−), base cati- 
ons (e.g., Molot et al., 1989), base cation dilution dur-
ing run-off events (e.g., DeWalle & Swistock, 1994), 
dissolved organic matter (e.g., Buffam et  al., 2007), 
and inputs of marine aerosols (e.g., Kowalik et  al., 
2007).  In addition, although average NO3−  concen-
trations among exposed streams were relatively low 
(80 μg NO3−/L ± 51 SD; n = 6), concentrations were 

10 × higher than reference streams (8 μg NO3−/L ± 7 
SD;  n = 3).  Relatively small increases in nitrogen 
inputs (e.g., doubling of anthropogenic atmospheric 
nitrogen deposition) can alter nutrient cycling and 
algal species composition in remote oligotrophic 
freshwater ecosystems (Elser et al., 2009; Holtgrieve 
et al., 2011; Wolfe et al., 2003).

Although atmospheric emissions of fluoride from 
the smelter have decreased in the past 10 years, fluo-
ride levels in exposed streams are elevated near the 
smelter.  Average concentrations of F−  exceeded 
Canadian guidelines for the protection of aquatic  
life (120  μg F  −/L; CCME, 2002) in five of six 
exposed streams (355  μg F  −/L ± 173 SD; range 
177–565  μg F−/L;  n = 5), which was 14 × higher 
than the three reference streams (26  μg F−/L ± 8  
SD; range 17–34  μg F−/L;  n = 3).  Maximum F−   
concentrations (i.e., 95th percentile) in the five highest  
exposed streams ranged up to 202–833 μg F−/L. Ele- 
vated levels of F− as low as 200 μg F−/L have been 
shown to negatively affect some sensitive species 
of benthic invertebrates (Camargo, 1996; Camargo 
& La Point, 1995; Camargo, 2003) and juvenile  
fish (CCME, 2002; McPherson et  al., 2014; Pearcy 
et al., 2015).

In conclusion, within the bounds of the results of  
our paper, and the literature we have cited, our origi-
nal statement—that elevated levels of sulfur, nitrogen,  
and fluoride “may contribute to [biological] effects” 
in these tributaries—was supported scientifically.   
We suggest that it is important to consider all three 
possible pathways of effects from sulfur, nitrogen, 
and fluoride, on annual and daily time scales, due to 
the potential for cumulative effects on aquatic biota, 
ongoing and historical industrial atmospheric emis-
sions, and given that emissions are forecasted to 
increase with proposed industrial development within 
the region.
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